
Aditya Deshpande, AD5718, 01504794

1. Network Training

Task 1.1. The validation and accuracy curves for the de-
fault model can be seen in Figure 5 (Appendix). Table 1
shows a gap of 20.77% between training and validation ac-
curacy for the default model. This, combined with a point of
inflection in the validation loss curve [2] (as opposed to the
training loss curve which continues to decrease), strongly
indicates overfitting. Data Augmentation combats this by
increases the size and diversity of the dataset. The first aug-
mentation strategy consisted of a random rotation between
±0.15π, followed by a random horizontal flip. This yielded
an almost identical validation accuracy to the default model
and brought down the delta between train/val accuracies to
3.4%. This suggests that the overfitting problem has been
solved without compromising the accuracy of the model. A
more aggressive augmentation approach was also trialled,
with a random shift in the range 0.3x0.3 and a random zoom
in the range of 0.4x0.4 being added to the existing pipeline.
This resulted in a training accuracy that was lower than the
validation accuracy. A validation loss lower than training
loss, seen in Figure 7 (Appendix), suggests an unrepresen-
tative training set [2]. A possible reason for this is that ex-
cessive transformations to the training data make it harder
to classify than the validation set which is not transformed.

Dropout breaks-up situations where network layers co-
adapt to correct mistakes from prior layers, in turn making
the model more robust against overfitting[1]. Two dropout
layers were used after the first two pooling layers in the
model. More dropout layers were not used as dropping too
many neurons can result in underfitting. Dropout rates from
0.1 to 0.5 were investigated (Table 8 in Appendix); 0.3 de-
livered the best validation accuracy, but 0.4 delivered a sim-

Model Training Accuracy (%) Validation Accuracy (%)
Default 99.35 78.58

Less Agg. 81.70 78.30
More Agg. 63.98 70.32

Dropout 81.41 80.33
Batch Norm. 98.42 79.36

Dropout + BN 83.88 82.30
Kernel Init 0 9.55 10.00

Table 1: Accuracies for different models

ilar value while also having the lowest difference between
training and validation, so this was chosen. Using batch
normalisation in the first two blocks also caused a slight in-
crease in validation accuracy and training speed. Combin-
ing dropout and normalisation yielded the highest validation
accuracy, while also keeping the gap between training and
validation accuracy small, indicating a good fit. Initialising
kernel weights to zero resulted in validation accuracy pla-
teuing at 10%. As ReLU(0) = 0, the weights are never
updated, meaning that no learning occurs.

Figure 1: Loss curves for SGD Optimiser with different LRs
Figure 1 shows loss during training for three Learning

Rates. As the learning rate increased, the model converged
faster and minimised loss further. This is likely due to the
model with higher LR being able to escape local minima
which lower LR models converge to.

2. Common CNN Architectures
Task 2.1. Prior to training, a hypothesis was constructed:
training weights from scratch using Tiny-ImageNet (TIN)
would result in the poorest performance and longest training
time on VGG16. Results in Table 2 confirm this. This is be-
cause TIN only has 500 images per class, while the full Im-
ageNet contains millions of images with several thousand

Model
Validation

Accuracy (%)
Training
Time (s)

Avg. Inference
Time (ms)

Scratch VGG16 34.03 982.75 0.3316
Transfer Learning VGG16 47.01 198.62 0.3310

Fine Tuning VGG16 53.72 520.42 0.3314
DenseNet201 58.90 2033.0 1.2160

Table 2: Tiny-ImageNet Classification Performance and
Timing for Different Models. GPU: Tesla P100-16GB

1



per class[3]. Training on more data is advantageous as pat-
terns in the data will appear more frequently, allowing the
model to learn from them. Training time is also very high as
all the weights must be calculated from scratch, and back-
propogation is very intensive. Transfer Learning combats
this as the pre-trained weights are calculated using a larger
dataset. Only the final dense layers need to be trained, so
training time is low as well. This is still not the best strat-
egy; while ImageNet provides better data to train on, this
data isn’t fully representative of TIN. There may be pat-
terns in TIN that are less pronounced in ImageNet. This is
resolved by fine-tuning the pre-trained weights. This keeps
the advantages of Transfer Learning while better tailoring
the model to TIN - yielding the highest accuracy amongst
the VGG16 models. Fine tuning is faster than training from
scratch; as the loaded weights are already close to optimal,
fewer epochs are required to reach sufficient performance
for early-stopping. This fine-tuning approach was also ap-
plied to DenseNet201. As it is significantly deeper, train-
ing time does increase, but it yields better accuracy. As the
VGG16 models have the same depth, they have very similar
average inference times per image. In contrast, the deeper
DenseNet201 takes over 1ms to infer an image, as perform-
ing a forward pass through 201 layers takes much longer.

3. Recurrent Neural Networks

Task 3.1. Regression A range of window sizes were tri-
alled to evaluate the most optimal window sizes (WS). The
MSE for each of these can be found in Table 9 (Appendix).
For window sizes < 10, test MSE fluctuates in the 50s/60s,
indicating bad performance. Figure 2a shows the predicted
line lagging behind the true values by 5, which is the win-
dow size. This is consistent with the other plots for small
window sizes, and suggests the RNN requires a larger win-
dow. The true data spikes roughly every 12 months, with
magnitude progressively increasing. (Figure 8 Appendix).
The model with WS=10 still lags (as 10 < 12), but it only
lags by 2 months as it can predict some behaviour. Once
the WS exceeds 12, the lag disappears; WS=15 predicts the
spikes accurately, but not their amplitude. This is because
the model can’t see far back enough to notice the increas-
ing amplitude. Increasing the WS to 20 allows the model

Figure 2: RNN performance for window sizes: 5,10,15,20

to do this, yielding the lowest MSE and prediction plots
that follow the true data. Setting a larger than needed WS,
such as 25, leads to unnecessary noise being added, hurting
performance[5].

Task 3.2. Text Embedding The performance of three
models for sentiment analysis was recorded in Table 3.
While all three had similar accuracies (see plots in Figures
9,10,11 in Appendix), the review scores varied. The re-
views, (Figure 12 in Appendix) use the same words in a dif-
ferent order to convey different sentiments. Therefore, Em-
beddings Model fails to differentiate between the reviews as
it doesn’t find the links between words due to its 1D map-
ping. The basic LSTM Model did a little better, however
the flat validation accuracy curve shows that no learning
took place on the validation set. Transfer Learning with
GloVe was the best at identifying the sentiments, showing
that adapting GloVe embeddings to the training set is the
optimal strategy.

Model Test Accuracy (%)
Negative

Review Score
Positive

Review Score
Embedding 85.20 6.81× 10−6 6.81× 10−6

LSTM 85.56 0.2098 0.3499
GloVe 86.60 0.08272 0.6377

Table 3: Sentiment Analysis RNN Performance

Task 3.3. Text Generation The word model outperforms
the character model for all temperatures excluding 0.1 to
0.3. Character-wise generated text has higher variability
than word-wise, leading to more novel words occurring in
the prediction. BLEU looks for matches between the gener-
ated text and the reference text on a word level - putting
the character model at a disadvantage. Furthermore, the
variability increases with temperature, resulting in random
strings of characters being generated instead of words. For
the word model, temperature and BLEU are positively cor-

Figure 3: BLEU Score for character/word models vs tem-
perature

2



related; lower temperatures restrict the range of words avail-
able, leading to incorrect grammar or the prediction repeat-
ing itself. As temperature rises, the prediction’s vocabluary
grows and matches to the source begin to increase. How-
ever, for all temperatures, the models were far off generat-
ing text that made complete sense. The effect of tempera-
ture on text can be seen in Figures 13 and 14 (Appendix).

4. Autoencoders
Task 4.1: Non-Linear Transformations for Representa-
tion Learning In this task, different Auto-encoder archi-
tectures were explored before proposing two architectures,
one convolutional and one non-convolutional, that produce
a good feature representation using the MNIST data set.
The first non-convolutional architecture explored was us-
ing linear activation functions with 1 dense layer for both
the encoder and decoder, which recorded a validation MSE
of 0.0255. Converting this architecture to a non-linear auto-
encoder, using sigmoid activation instead, lead to a drop in
validation MSE to 0.0143 as the encoder is able to learn
non-linear transformations. Changing the activation func-
tion to RELU and adding more layers both lead to further
decreases in validation MSE recorded which lead to the fi-
nal non-convolutional architecture proposed in Figure 15.

The proposed convolutional architecture in Figure 16 in-
cludes convolutional layers with pooling added to the pro-
posed non-convolutional architecture.

Training a classifier on the representation space pro-
duced by the convolutional model leads to a higher classifi-
cation accuracy than the non-convolutional model (Table 4).
This shows that the convolutional model has better feature
extraction which is illustrated in the feature representation
plots in Figure 17. The convolutional model shows more
distinguishable clustering with fewer anomalies. As each
cluster is related to visual similarities in the image space
[6], the classifier can learn to give more accurate predictions
using the representation from the convolutional model. The
better feature representation from the convolutional model
this also leads to a slightly higher MSE recorded(Table 4)
as it shows better denoising properties when reconstructing
the image which is highlighted in Figures 18 and 19. The
reason the convolutional model encodes a more representa-
tive feature space is because convolutional layers are more
suited to image data than just using dense layers as they
retain the data related to the spatial relationships between
pixels.

The PCA method seems to produce the worst feature rep-
resentation out of the 3 methods explored. The correspond-
ing feature representation plot (Fig 17) has much greater
overlap between clusters which is reflected in the higher
classification accuracy recorded. The MSE recorded is also
much greater than the other 2 model suggesting the images
reconstructed are of poor quality due to the poorer feature

encoding. The reason for this significant performance dif-
ference is that the PCA only uses linear transformations to
encode the principal components as opposed to the other
models proposed that have non-linear activation functions
allowing for the learning of non linear transformations.

Encoding
Method

Training
MSE

Validation
MSE

Classification
Accuracy

Non-
Convolutional

0.0092 0.0095 0.927

Convolutional 0.0114 0.0117 0.9586
PCA Method 0.0255 0.0256 0.8094

Table 4: Table to show performance of different encoding
methods

Loss Function MSE
MSE 0.0064
SSIM 0.2966

1/PSNR 0.0119
MAE 0.0053

Table 5: Table to show MSE for autoencoder with different
loss functions
Task 4.2:Custom Loss Functions Figure 20 shows im-
ages generated from using different loss functions to de-
noise an image. The SSIM Model yields the greatest
MSE(Table 5) by far due to incorrect colouring of the im-
age. However, as SSIM is an indicator of structural simi-
larity between two images [7], this model does do well in
keeping the detailed structure and edges. On the other hand,
the other loss functions operate on a pixel by pixel basis.
Hence, they appear to perform better in removing noise and
retaining the correct colouring but the structures and edges
seem more blurred than in the SSIM images.

5. VAE-GAN

Model Type dl MSE Inception Score
VAE and KL loss 2 0.0389 5.105

VAE and w/o KL loss 2 0.0396 3.422
VAE and KL loss 10 0.0111 7.285

VAE and w/o KL loss 10 0.0102 5.824
GAN 5 - 7.833
GAN 10 - 8.119

Table 6: Table to differences in MSE losses and IS score for
reconstructed images between VAE and GAN model con-
figurations. dl = latent dimensionality
Task 5.1: MNIST generation using VAE and GAN In
this task, the performance of different VAE and GAN Model
types,in terms of IS and MSE recorded, was investigated
(Table 6). Increasing the latent dimensionality, dl, lowers

3



the MSE recorded by allowing for more features to encoded
in latent space with less information loss. This allows re-
construction of images via the decoder to produce more de-
tailed outputs with a lower MSE. Increasing dl also leads
to higher IS scores. This is because being able to encode
more features in the latent space increases the diversity of
the output classes it can generate. Hence, p(y) (probabil-
ity distribution of output classes) is more uniform which
increases the IS score. A higher dl also leads to better
more distinguishable clustering in the feature space. There-
fore classification of outputs can be more accurate leading
to a more ’peaky’ p(y|x)(probability distribution of output
classes given input image x) which increases the IS score.

Training the VAE Model with KL Divergence loss low-
ers MSE recorded but increases the Inception score. The
reason for the lower MSE is because the KL pushes the out-
put distribution of the model (Q(z|x)) to be within close
proximity of the standard normal distribution. Hence, de-
coding back to the same exact input image is not as good,
leading to a higher MSE. However using KL Divergence
Loss leads to a higher IS, indicating that the quality and
diversity of generated images are better with this model.
Without using KL Divergence loss, sampling the standard
normal distribution leads to some classes of images never
being sampled as they do not map to within this distribu-
tion. This decreases diversity of generated images which
decreases the IS. Additionally, sampling points in the la-
tent space that are far from feature encoding distributions
is more likely without KL Divergence. This would lead to
very poor quality images being generated which would also
decrease the IS. VAE records lower Inception Scores than
GAN for the same dl as VAE models seem to generate more
blurry images.

Model Type MAE
Trained MAE 0.0446
Trained cGAN 0.0462

Table 7: Table showing differences in MAE losses for
coloured images generated using cGAN and MAE models

Task 5.2: Quantitative vs Qualitative Results Although
cGan records a higher MAE, from analysing the images
generated in Figure 21 it seems that cGan actually performs
better in generating recoloured realistic-looking images.
In many cases, the cGan model recolours the input black
and white image to a different colour than the real image
but is still realistic. On the other hand the MAE model
outputs a grey-scale image that would record a lower MAE
but actually looks unrealistic and doesn’t show proper
recolouring.

6. Reinforecment Learning

Figure 4: Denoising of Images with different loss functions
Task 8.1:On Policy vs Off Policy Different learning con-
figurations were trialled when implementing reinforcement
learning to solve the Open AI cartpole problem. The off-
policy Q-learning methods seem to yield slower learning
compared to on-policy SARSA methods which suggests
poorer exploration. However, after 200 episodes the Q-
learning methods record higher average rewards than the
SARSA methods which suggests better exploitation. Fur-
thermore, the performance of SARSA methods appear to
drop significantly after peaking. This seems to be in keep-
ing with theory that Q-learning is more stable but has slower
training than SARS [4].

4



References
[1] J. Brownlee. A gentle introduction to dropout for

regularizing deep neural networks, 2018. Available
at: https://machinelearningmastery.com/dropout-for-
regularizing-deep-neural-networks/.

[2] J. Brownlee. How to use learning curves to diagnose
machine learning model performance, 2019. Available
at: https://machinelearningmastery.com/learning-curves-for-
diagnosing-machine-learning-model-performance/.

[3] Devopedia. Imagenet, 2019. Available at:
https://devopedia.org/imagenet.

[4] V. Kumar. Reinforcement learning: Temporal-difference,
sarsa, q-learning expected sarsa in python.

[5] A. Singh. Anomaly detection for temporal data us-
ing long short-term memory (lstm), 2017. Available at:
https://pure.tue.nl/ws/files/88387452/AkashThesis.pdf.

[6] C. Tutorial. Autoencoders, 2021. Available at:
https://github.com/MatchLab-Imperial/deep-learning-
course/blob/master/06Autoencoders.ipynb.

[7] Wikipedia. Ssim. Available at:
https://en.wikipedia.org/wiki/StructuralsimilarityMulti −
ScaleSSIM.

7. Appendix
Code Changes for Task 6.1:

Q-Learning with Softmax: Q-Learning with Softmax:
The soft max function takes in as input the current state
actions and outputs a probability distribution for the next
action to sample from which is done in the act function.

SARSA with e-greedy: Instead of using replay SARS is
an on-policy method so learns from the recent experience.
This is done by changing the replay function so that the
memory buffer is overwritten with the last experience rather
than being added to. The Q function is updated by calling
the act function in the replay function for on-policy learn-
ing.

SARSA with Softmax: The SARSA and softmax
changes described above were done.

Drop Rate Training Accuracy (%) Validation Accuracy (%)
0.1 95.81 79.26
0.2 90.59 81.21
0.3 86.04 81.49
0.4 81.41 80.33
0.5 76.47 77.93

Table 8: Accuracies for different dropout rates

Figure 5: Validation and Loss Curves for Default Model
(Lab 3 Task 1)

Figure 6: Validation and Loss Curves for Model with less
aggressive data augmentation(Lab 3 Task 1)

Figure 7: Validation and Loss Curves for Model with more
aggressive data augmentation(Lab 3 Task 1)

Window Size Training MSE Test MSE
1 23.92 52.52
2 29.22 64.65
3 25.81 55.92
4 25.20 64.82
5 26.70 59.23
10 21.47 44.78
15 20.29 41.87
20 18.71 34.21
25 23.5 153.39

Table 9: MSE for RNNs with varying window sizes

5



Figure 8: Airline True Data Plot

Figure 9: Embeddings RNN Model Training and Validation
curves

Figure 10: LSTM RNN Model Training and Validation
curves

Figure 11: LSTM GloVe Embedding RNN Model Training
and Validation curves

Figure 12: Review Strings

Figure 13: Character Model Predicted Text for varying tem-
peratures

6



Figure 14: Word Model Predicted Text for varying temper-
atures

Figure 15: Non-Convolutional Network Architecture

Figure 16: Convolutional Network Architecture

Figure 17: Feature Representation plots

7



Figure 18: Original vs Reconstructed Images using Convo-
lutional AUtoencoder

Figure 19: Original vs Reconstructed Images using Non-
Convolutional AUtoencoder

8



Figure 20: Denoising of Images with different loss func-
tions

Figure 21: Recolouring Images for MAE and cGan Models

9


